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Abstract. We investigate how it is possible to shape robot behaviour
adopting a molecular or molar point of view. These two ways to approach
the issue are inspired by Learning Psychology, whose famous represen-
tatives suggest different ways of intervening on animal behaviour.
Starting from this inspiration, we apply these two solutions to Evolution-
ary Robotics’ models. Two populations of simulated robots, controlled
by Artificial Neural Networks are evolved using Genetic Algorithms to
wander in a rectangular enclosure. The first population is selected by
measuring the wandering behaviour at micro-actions level, the second
one is evaluated by considering the macro-actions level. Some robots are
evolved with a molecular fitness function, while some others with a molar
fitness function. At the end of the evolutionary process, we evaluate both
populations of robots on behavioral, evolutionary and latent-learning pa-
rameters.
Choosing what kind of behaviour measurement must be employed in
an evolutionary run depends on several factors, but we underline that
a choice that is based on self-organization, emergence and autonomous
behaviour principles, the basis Evolutionary Robotics lies on, is perfectly
in line with a molar fitness function.

1 Introduction

Designing mobile robot’s behaviour is far from trivial: designing them by hand
from scratch is a very difficult task for humans, while designing them automat-
ically doesn’t assure to scale up to complicated tasks. A lot of energy in this
process is devoted to behaviour description. We usually describe the behaviour
we wish to model in qualitative terms that are then translated in the equation
required for automatic evaluation. But, in doing this, we can assume various
points of view, different analysis levels. For example, if we want a robot to play
soccer, to follow the shortcut up to a target or just to wander in an environment
without sticking into obstacles, we can concentrate on constraints on a micro-
level (the sensors or motors state) or on global behaviours (score goals or explore
an arena). This latter frame of description is the one assumed, for instance, by
Behavior Based Robotics [1], an approach in which the desired behaviour is di-
vided into a set of simpler behaviours. With this approach, however, the designer
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must decide which are these simpler behaviours. Also in Robot Shaping [3], a
technique that deals with designing and building learning autonomous robots in
which the human designer proposes how a task should be carried out and how
it should be decomposed into sub-tasks that are then implemented at the robot
level and reinforced, the focus is on behaviour level.
The decision about behaviour description to be kept for robot behaviour is not
different from what must be defined in the supervision of learning in natural
organisms. In fact we talk about shaping, a term coming from experimental psy-
chology [19] where it describes a particular technique to train animals. In other
words, Robot Shaping, Behavior Based Robotics and, as we will see, also other
techniques for robot behaviour design, must face the same problem that encoun-
tered Behaviorist Psychology and encounters Learning Psychology, that is to
choose the right analysis level that allows to evaluate the efficiency of training
procedures on animals and human beings. What does an experimenter (but also
a teacher or a breeder) must concentrate on to improve learning? This is a ques-
tion many psychologists have tried to answer, proposing different interpretations
with their experimental or clinical work. Hill[7]in his work on Learning Psychol-
ogy has distinguished these potential solutions into two families: molecular vs.
molar. What does this means?
Molecular and molar are two words derived from chemistry. The first one refers
to molecules, ”the smallest unit into which a substance can be divided without
changing its chemical nature” (Oxford Wordpower Dictionary), while the second
one refers to mole, the number of grams of a certain molecule that is equal to the
number that indicates its molecular weight. More generically we can consider a
mole a set of various molecules of the same kind. In Learning Psychology these
terms are adopted to indicate theories that consider the smallest components
of a behaviour such as a muscle that moves (molecular) or the behaviour as a
whole(molar), for example going out of a maze.
Some psychologists, the molecular approach supporters, believed that the way
to follow was to concentrate on micro-behaviours that formed animal’s perfor-
mance (Pavlov [16] for aspects related to micro-actions stabilization and Guthrie
[4, 5] for the importance to focus on micro-actions to understand behaviour). On
the contrary the molar approach (cfr.Tolman[17]) preferred to reinforce macro-
behaviours that lead to a satisfying final outcome, for example to localize a
target area in a complex labyrinth.
These two approaches are indeed complementary: we can indeed imagine ”molar”
and ”molecular” not as dichotomous entities, but as the extremes of a contin-
uum for behaviour definition that may be applied to Robotics and robots’design
too, as it is represented in figure 1 for a wandering behaviour. This distinction is
echoed in Evolutionary Robotics, the technique we have used in the experiments
described in this paper.
Evolutionary Robotics [15, 6] is a discipline belonging to Artificial Life [8] whose
goal is to obtain artificial agents, both physical or simulated. This methodology
is inspired by darwinian selection, according tho which only fittest organisms can
reproduce. To run an artificial evolutionary process according to Evolutionary



3

Fig. 1. Two ways to produce a wandering behaviour: we can described it at the lower
level of a set of micro-actions (measures of sensors and motors activation or internal
states) in the molecular approach or at the level of macro-actions in the molar approach.

Robotics’ dictates it is necessary to define a criterion that addresses the entire
evolution. A typical experiment in Evolutionary Robotics can be described like
this: an initial population of robots whose features are defined in an artificial
genotype, is tested and evaluated according to a criterion, usually referred to as
the fitness function. For example we may define in the genotype the connections’
weights of an Artificial Neural Network, the robot controller that determines the
behaviour. The robots that obtain the best scores are allowed to reproduce: their
genotypes, opportunely mutated or crossed, will constitute the genotypes of the
second generation and will thus determine the second generation phenotypes
and behaviours. The testing-evaluating-reproducing loop is iterated for a cer-
tain number of generations or until at least some robots display the desired
behaviour or solve the predefined task. It is clear from this brief description the
fundamental role played by the fitness function in the evolutionary process, as
this function is used to evaluate the performance of robots and to select the ones
that will reproduce. In fact robots are evaluated about their ability according to
the criterion defined by the experimenter, measured by the fitness function. The
probability that a robot reproduces depends on the score obtained in respect
to this function. Consequently fitness formula’s design is fundamental in every
Evolutionary Robotics’experiment.
This aspect has been underlined since the seminal work by Nolfi and Flore-
ano [15] who proposed a framework for describing various fitness functions: the
Fitness Space. This fitness space is a three-dimensional space with axes repre-
senting three continuous dimensions that are relevant for fitness functions. A
fitness function can then be imagined as a point in this space.
The first dimension goes from ”functional” to ”behavioral”. A functional fitness
function focuses on functioning modes of the controller, while a behavioral one
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evaluates its behavioral outcome.
The second dimension ”explicit vs.implicit” considers the amount of constraints
that are taken into account in the fitness function. An explicit fitness function
considers many precise components, while an implicit one has just few constraints
or not at all.
The latter dimension has ”external” and ”internal” as extremes, indicating if the
variables in the fitness function are accessible to the evolving robot computation.
In an internal fitness function variables are calculated on sensors’ activation of
the robots, while in an external one on information available only for the exper-
imenter.
Choosing a fitness function is not a trivial decision that strictly depends on the
purpose of the evolutionary process and will address the whole bulk of results.
Also in this case, it is necessary to find the right mix between molar and mole-
cular. For example, when Nolfi and Floreano [15] want to obtain an obstacle
avoidance behaviour, they use a molecular fitness function that rewards partic-
ular micro-actions(we will describe it in detail in the next section). If, on the
contrary, the task is to localize an area inside an arena, it’s not compulsory to
consider micro-actions and it can be more useful to use a molar function [9].
With more complex tasks, integration of the two approaches may be a right
choice [12]. Another example of differently conceived fitness functions can be
found in co-evolution experiments. To study prey-predator dynamics Nolfi and
Floreano [14] use a molar fitness function that assigns simply 1 point for the
predator and 0 for the prey if the predator is able to catch the prey and 0 for
the predator and 1 for the prey if it escapes the predator. On the contrary Cliff
and Miller [2] used in their experiments on co-evolution a more complex fit-
ness function that includes more constraints that address evolution, for example
predators are also scored for their ability to approach the prey.
So it seems to us very fruitful to analyze the possible outcome of differently con-
ceived fitness functions as it might shed light on how to guide learning processes.
In this paper this is what try to do, that is to compare two differently charac-
terized fitness functions (molecular vs. molar) on the same behaviour to verify
what happens at behavioral, learning or evolutive level.

2 Wandering in a closed arena without sticking into
obstacles: two possible fitness functions

The task we have tested the fitness functions on is a simple wandering task. We
just want the robot to move in a rectangular enclosure without bumping into
walls and into cylindric obstacle that are inside the arena.
In order to compare two differently conceived fitness functions we analyze the
molecular fitness function used by Nolfi and Floreano [15] to obtain an obstacle
avoidance behaviour and a molar one proposed by Walker and Miglino [20]. The
molecular fitness function is composed by three distinct components that reward
three variables: the average of robot wheels’ speed, the wheels’differential and
the activation value of the most active infrared sensor. These three components
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encourage motion, straight movement and obstacle avoidance.
For the molar fitness function we divide the rectangular arena into 50 cells (10*5)
and we give the robot a reward that corresponds to the number of cells visited
for the first time.

3 Method

In our experiments, we run two different evolutionary process to obtain a wan-
dering behaviour. In the first one the population of robots is selected with the
molecular fitness function by Nolfi and Floreano [15] described in the previous
section. In the second one the robots are selected using the molar fitness func-
tion. We use the EvoRobot simulator [13] to run the evolutionary process on the
software robots.

3.1 Robots

Each robot consists of a physically accurate simulation of a round robot, with
a diameter of 5.5 cm. Each robot is equipped with 8 infrared proximity sensors
(capable of detecting objects within 3 cm of the sensor). The robots move using
2 wheels (one on each side of the robot) powered by separate, independently
controlled motors. The control system is an Artificial Neural Network: a per-
ceptron whose input layer is formed by 8 input units that codify the activation
of Infrared Sensors that receive stimulation from obstacles up to 5cm. In the
output layer there are 2 output neurons, totally connected to all input units,
that control wheels.

3.2 Training environment

In our experiments, we use this training environment: a rectangular arena (500*1000
mm.) in which there are 5 obstacle in randomly chosen position. These obstacles
are cylinders with 27.5 mm. radius.

3.3 Training procedure

The robots are trained using a Genetic Algorithm [10].
At the beginning of each experiment, we create 100 simulated robots with ran-
dom connection weights. We then test each robot’s ability to wander inside the
arena. The robot is positioned in a random location and allowed to move around
for 100 computation cycles (1ms per cycle). The robots are rewarded according
to the two fitness functions described before: a molar and a molecular one. At
the end of this procedure, the 80 robots with the lowest scores are eliminated
(truncation selection). The remaining 20 robots are then cloned (asexual repro-
duction). Each ”parent” produces five ”offspring”. During cloning, 25 per cent
of neural connections are incremented by random values uniformly distributed
in the interval [-1, +1]. The testing/selection/cloning cycle is iterated for 100
”generations”. For each population the simulation is repeated twenty times with
the same parameters and randomly generated initial connecting patterns.
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4 Results

4.1 Evolutionary patterns

In figure 2 and 3 the evolutionary trends for the two populations are represented.

Fig. 2. Evolutionary trend for robots selected by the molecular fitness function. On x
axis there are generations, on y axis fitness scores. The thin line indicates the score
gained on the molar fitness function, that is not considered for selection.

The scores regard the average of the best robots of each seed along genera-
tions. As it can be seen standard deviation is lower for the molar fitness function.
In the figures above the scores on the fitness function not used for evolution are
represented, as these data are relevant for another analysis we will describe in
the following section.

4.2 Training speed

We take then into account an evolutionary parameter that is the time lapse from
initial generation up to the peak of fitness. This is a measure of evolutionary
process speed, a parameter that is crucial for Evolutionary Robotics, as robot
evaluation may require a long time. It is also an indirect measure of how ”easy”
a task is for the evolving robot. If less time is required to reach the maximum in
terms of fitness scores, this means that the task is easier to accomplish for the
system formed by the robot and the environment that constraints its action.
We thus compare the emergence time of fitness peaks in the two populations of
robots. We observe that for the robots evolved with the molar fitness function
the best solution appears after less generations than for the molecular fitness
function. This difference is statistically significant.

t(38) = 6, 41; p = 0, 00.
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Fig. 3. Evolutionary trend for robots selected by the molar fitness function. On x axis
there are generations, on y axis fitness scores.The thin line indicates the score gained
on the molecular fitness function, that is not considered for selection.

4.3 Fitness functions comparison

We compare the two fitness function on what we call latent learning. This is a
concept close to the one of generalization, but it is more focused on generalization
lying inside a certain task. This means that we wonder if, during the evolution-
ary process, robots learn something else about the task that is not explicitly
rewarded. In this case we would like to know if, while evolved for wandering
with a molar function they maximize also the constraints of the molecular one
and vice-versa. From figures 2 and 3 we can infer that robots evolved with the
molar fitness function gain good scores in the molecular one, but robots evolved
with the molecular fitness function score bad on the molar one. So we run an-
other test on this issue: what happens if we evaluate the best 20 robots evolved
with the molar fitness function using the molecular one? The fitness scores, even
if less high in average than the corresponding values obtained with molecular
fitness function, are not significantly different.

t(38) = 0, 95; p = 0, 34.

What happens if, on the contrary, we go the other way around, testing the best 20
robots evolved with molecular fitness function using the molar one? The results
obtained by these robots are significantly lower than the ones obtained with the
molar function.

t(38) = 9, 92; p = 0, 00.

This means that the molar fitness function, even if not explicitly designed to
maximize the three components that form the molecular one, ”contains” never-
theless these variables implicitly and addresses the evolutionary process in order



8

to maximize them. On the contrary, the molecular fitness function does not al-
low the emergence of the exploratory behaviour rewarded by the molar function.
This means that the molar fitness function ”includes” the molecular one in terms
of latent learning but not vice-versa.

4.4 Behavioral Analysis

What happens at the behavioral level? Figures 4 and 5 show the trajectories by
two very efficient robots from the populations evolved with molecular and molar
fitness functions.

Fig. 4. Behaviour displayed by an individual evolved with the molecular fitness func-
tion.

Fig. 5. Behaviour displayed by an individual evolved with the molar fitness function.

As it can be seen from the figures above, the behaviours displayed by robots
evolved with different fitness functions are quite different. The robots evolved
with the molecular fitness function proceed straight until they reach a wall or
an obstacle, at this point they turn left or right, avoid the obstacle and continue
their run.
On the other side, robots that have been evolved with the molar fitness function
proceed fast and avoid obstacle but, in many cases they do not go straight. In
fact between these robots we can find, together with some agents that displace
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straightly, many robots that follow curved trajectories, drawing curves with dif-
ferent radius and avoiding obstacles when encountered. The behaviours that
emerge with the molar fitness function are much more varied.

5 Conclusions

The data exposed above suggest that a wandering behaviour can emerge adopt-
ing both a molar and a molecular point of view. Why should we prefer one or
the other? As happens in natural organisms’ learning supervision, it depends on
what we want to achieve. The molecular function can be the right choice in some
cases and the molar function in some others.
The presented results lead us to sustain, for the simple task we analyzed, the
molar one. Why? It allows the system to build its own solution freely. Regardless
of what an experimenter thinks a solution should be like in details, a global so-
lution emerge by itself. This is possible because the system formed by the robot
and the environment can self-organize, thus exploring ways to solution that may
be not considered a priori. What does this emergent solution look like? First of
all it includes a wider set of strategies.
To explore an environment while avoiding obstacles we could believe that the
best is to go straight, but following curved trajectories may be a good way to
solve the same task. This kind of solution, that does not emerge in the case
of the molecular fitness function, is equally efficient and enriches the whole of
solutions between which evolution can look for. This is surely an advantage in
an evolutionary perspective. With this kind of function, robots are favored to
establish a useful relation with the environment exploiting a very precise coor-
dination between input and output, thus adapting to external constraints.
Good hints can be found at the evolutionary level too: the evolutionary process
appears to be faster with the molar function as the fitness peak is reached in
fewer generations. Moreover the standard deviation in fitness scores is low, thus
indicating that a great amount of robots is able to obtain high fitness values.
Another positive aspects is about latent learning. The molar function permits
to improve also the scores on the molecular constraints, even if not explicitly
considered. In other words, it shows a good latent learning. The last, but not
least, reason has been already partly discussed and is about the preference for a
self-organizing solution. Letting the system the possibility to self-organize, un-
expected and more efficient solutions can emerge, also suggesting new ways of
approaching a certain problem, an important issue in scaling to more complex
behaviours.
In fact, in building an intelligent robot a mechanical creature which can function
autonomously” (pag.3), that is one of to purpose of Artificial Intelligence, the
science of making machines act intelligently(pag.15) [11], we must keep in mind
that autonomy is fundamental, also in the sense that the robot must operate
without human-intervention, supervision or instruction and adapt to changes in
the environment and itself. If this is the goal, also the means to reach it should
be informed to the maximum possible autonomy, what we can do choosing a
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molar fitness function in Evolutionary Robotics rather than a molar one.
In closing we would like to underline that, even if these results do not apply
directly to natural organisms’ learning supervision, they nonetheless supply in-
teresting insights on this controversial issue.
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